Family-Based Association Analyses in Plants

Clay Sneller, Ohio State University Kevin Smith, Jon Massman, University of Minnesota

Association Analyses (AA)

- Associate to connect in the mind or imagination
- Statistically associate marker and phenotypic data
- Detect a physical linkage of marker and trait loci (QTL)
- Normally used in complex populations: many parents
- AA must deal with population structure

Population Structure: Unequal relationship between individuals

Population- vs Family-Based AA

	Population	Family
Estimation association parameter	Over entire population	Within lineages, between relatives then compiled
Population structure	Estimated & modeled	Negated by sampling
Inference of linkage	Implied by significance	Required for significance

Population-Based AA

- Commonly used in plants
- Applicable to many population types
- Common statistics
 - Main effect of marker: means comparison
 - Covariance for effect of subgroups
 - TASSLE+STRUCTURE, unified mixed-model of Yu et al. 2006

I J Α Β Ε F Н Μ Ν G С D 0 Κ 0 1 0 0 1 0 $= X_{11} = X_2$ 0 2 **0 2** HQ: 0 0 X 0 1 0 0 0 0 00 0 0 0 0 1 0 0 2 1 Genotyped $\pi^\pi_{\ \pi}$

Phenotyped

$$Y_i = u + g_i + other effects$$

 $Y_i = u + Cov + g_i +$

$$X_{1} > X_{0} = X_{0}$$

								<u>Mean</u>	Freq "1"	Freq "0"
1	Q		0 1	1 0	0 1	1 0	0 1	75	0.5 $\overline{X}_{1} > \overline{X}_{0}$	0.5
1	q		1 0	0 1	1 0	0 1	1 0	75	0.5 $\overline{X}_{1} < \overline{X}_{0}$	0.5
		Y _i =	u	+ (Cov	/+	g _i -	- +	$\overline{X}_1 = \overline{X}$	2

Family-Based AA

- As individuals become more related, they become more similar
- Estimate association parameter within lineages
- Compile and test for significance

Mean Freq "1" Freq "0"

"Sib" Pair Regression

Haseman & Elston, 1972

<u>Behavior</u> Sweet	Hair <u>Pigment</u> 2	<u>Marke</u> A
Sassy	2	A
Steady	7	В

Regress Phenotypic Difference² on Proportion of IBD alleles at Marker

Multiple Families: Lineages

Family	n	No.	Freq	Freq	Freq
		Pairs	0	1	2
Snellers	3	3	0.66	0.33	0
Vassilyev	69	2346	0.50	0.50	0
Daad	86	3655	0.35	0.55	0.10
Hatfields	35	595	0.90	0.10	0
McCoys	35	595	0.90	0.10	0

Human Genetics

FBAA

- Family data is hard to collect, verify parentage
- Studied populations are not highly structured - random
- Careful *apriori* sampling to minimize Affect of structure
- VERY large population size

PBAA

FBAA Example: 206 Barley Lines, Barley CAP

- Derived from 65 biparental crosses
- Average 3.1 progeny per cross
- DON data from three environments $-h^2 = 0.52$
- Genotyped with 2924 SNP markers BOPA_C(1)
- Analysis used 676 SNPs (PIC > 0.18)

PCA of Genetic Similarity Matrix

Developing Pairs for the Pair-Regression

Models

Tassle vs Pair-Regression

of QTL

Tassle & Pair-Regression16Tassle Only1Pair Regression Only4

Population well suited for both Clear lineages 3 lineages

Xsm	сМ	Var	PR	T (LOD)
7H	161	43	****	* 2.6

13		****	
13	58	****	
17			* 2.7
	13 13 17	13 13 <mark>58</mark> 17	13 **** 13 58 **** 17

5H	87 I	26	****
•	89		****
	0.0		
	04		****
	94 05		*
	95		

Xsm	сМ	Var	PR	T (LOD)
зн	145	46	*****	** 3 1
511	148	τu	****	5.1
	150		*****	
	155		****	

1H	51	***
	53 56 47	****

FBAA is Well Suited for Plant Breeding Populations

- Populations are EXTREMELY relevant
- Many lines are phenotyped annually
- Multiple large lineages are present
 - Full Sibs
 - Half Sibs
 - Other degrees of relationship, lineages

2009 YR1 Phenotyping: FHB Index

Other Types of FBAA

- Quantitative Inbred Pedigree Disequilibrium Test
- Two-level Haseman-Elston Regression

Quick Takes on FBAA

- 1 study, much more needed to see applications: simulations
- Well suited for breeding populations
- May circumvent some issues inherent to population-based AA
- Can handle rare alleles
- QTL validation & evaluation in breeding populations
- Stability of QTL effects over lineages

Thanks

- Kevin Smith, Jon Massman
- Barley CAP folks
- Dr Elston
- Diane Mather

Types of Plant Populations and Association Analyses

	Diverse	Breeding	Biparental
Number of	Many	Many	2
Parents	Ancestors	Elite	Selected
Amount of Structure	Lots Evolution	Lots Breeding	V Little
Relevance to Breeding	Some	Lots	Variable
Type of	Popula	tion-Based AA	CIM
Analysis		Family-Based AA	

Association Analysis:

Associate: to connect in the mind or imagination Link: to connect, to tie or bind

- <u>Associate</u> variation of marker genotypes with variation of phenotypes
- Imply linkage of marker locus and QTL

3. High LD

4. Significance requires linkage

 \overline{X}_{1}

 $Y_i = u + g_i + other effects$

0	1	0	1	0	1	0
1	0	1	0	1	0	1
0	1	0	1	0	1	0
0	1	0	1	0	1	0
1	0	1	0	1	0	1
0	1	0	1	0	1	0

Population, Genotyped 1 marker Phenotyped

Test Association: Parameters are means

H0:
$$\overline{X}_0 = \overline{X}_1$$

 $Y_i = u + g_i + other effects$